\begin{tabbing} sum{-}deq($A$;$B$;$a$;$b$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=(\=$\lambda$$A$,$B$,$a$,$b$,$p$,$q$.\+\+ \\[0ex]Case $q$ of \\[0ex]inl($x$) $\Rightarrow$ \=Case $p$ of\+ \\[0ex]inl($x_{1}$) $\Rightarrow$ \=$b$/${\it eq}$,$b_{1}$.\+ \\[0ex]$a$/$e_{1}$,$a_{1}$. \\[0ex]$\langle$$\lambda$$\%$.\=(\=$\lambda$$\%_{1}$.$\%_{1}$($x_{1}$,$x$)/$\%_{4}$,$\%_{5}$.\+\+ \\[0ex]$\%_{4}$ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$)\+ \\[0ex](\=($\lambda$$\%_{1}$.$\ast$)\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($x$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($x_{1}$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($B$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($A$))\+ \\[0ex]($\lambda$$A$,$B$,$x_{1}$,$x$,$\%$. ($\lambda$$\%_{1}$.$\%_{1}$)(($\lambda$$\%_{1}$.($\lambda$$\%_{2}$.$\ast$)($\ast$))($\%$)))))))))) \-\-\-\-\-\-\-\\[0ex]($a_{1}$) \-\\[0ex]$,\,$$\lambda$$\%$.$\ast$$\rangle$ \-\\[0ex]inr($y$) $\Rightarrow$ \=$b$/${\it eq}$,$b_{1}$.\+ \\[0ex]$a$/$e_{1}$,$a_{1}$. \\[0ex]$\langle$$\lambda$$\%$.\=($\lambda$$\%_{1}$.any(($\%_{1}$($\ast$))))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($x$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($y$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($B$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($A$))\+ \\[0ex]($\lambda$$A$,$B$,$y$,$x$,$\%$. \=($\lambda$$\%_{1}$.\=Case $\%_{1}$ of\+\+ \\[0ex]inl($\%_{2}$) $\Rightarrow$ any($\%_{2}$) \\[0ex]inr($\%_{3}$) $\Rightarrow$ \=($\lambda$$\%_{4}$.any($\%_{4}$))\+ \\[0ex](\=($\lambda$$\%_{4}$.\=($\lambda$$\%_{5}$.($\lambda$$\%_{6}$.any($\%_{6}$))($\ast$))\+\+ \\[0ex]($\ast$)) \-\\[0ex]($\%$))) \-\-\-\\[0ex](($\lambda$$\%_{1}$.$\%_{1}$)(inr($\lambda$$\%$.$\ast$)))))))) \-\-\-\-\-\-\\[0ex]$,\,$$\lambda$$\%$.$\ast$$\rangle$ \-\-\\[0ex]inr($y$) $\Rightarrow$ \=Case $p$ of\+ \\[0ex]inl($x$) $\Rightarrow$ \=$b$/${\it eq}$,$b_{1}$.\+ \\[0ex]$a$/$e_{1}$,$a_{1}$. \\[0ex]$\langle$$\lambda$$\%$.\=($\lambda$$\%_{1}$.any(($\%_{1}$($\ast$))))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($y$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($x$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($B$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($A$))\+ \\[0ex]($\lambda$$A$,$B$,$x$,$y$,$\%$. \=($\lambda$$\%_{1}$.\=Case $\%_{1}$ of\+\+ \\[0ex]inl($\%_{2}$) $\Rightarrow$ any($\%_{2}$) \\[0ex]inr($\%_{3}$) $\Rightarrow$ \=($\lambda$$\%_{4}$.any($\%_{4}$))\+ \\[0ex](\=($\lambda$$\%_{4}$.\=($\lambda$$\%_{5}$.($\lambda$$\%_{6}$.any($\%_{6}$))($\ast$))\+\+ \\[0ex]($\ast$)) \-\\[0ex]($\%$))) \-\-\-\\[0ex](($\lambda$$\%_{1}$.$\%_{1}$)(inr($\lambda$$\%$.$\ast$)))))))) \-\-\-\-\-\-\\[0ex]$,\,$$\lambda$$\%$.$\ast$$\rangle$ \-\\[0ex]inr($y_{1}$) $\Rightarrow$ \=$b$/${\it eq}$,$b_{1}$.\+ \\[0ex]$a$/$e_{1}$,$a_{1}$. \\[0ex]$\langle$$\lambda$$\%$.\=(\=$\lambda$$\%_{1}$.$\%_{1}$($y_{1}$,$y$)/$\%_{4}$,$\%_{5}$.\+\+ \\[0ex]$\%_{4}$ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$)\+ \\[0ex](\=($\lambda$$\%_{1}$.$\ast$)\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($y$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($y_{1}$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($B$))\+ \\[0ex](\=($\lambda$$\%_{1}$.$\%_{1}$($A$))\+ \\[0ex]($\lambda$$A$,$B$,$y_{1}$,$y$,$\%$. ($\lambda$$\%_{1}$.$\%_{1}$)(($\lambda$$\%_{1}$.($\lambda$$\%_{2}$.$\ast$)($\ast$))($\%$)))))))))) \-\-\-\-\-\-\-\\[0ex]($b_{1}$) \-\\[0ex]$,\,$$\lambda$$\%$.$\ast$$\rangle$) \-\-\-\\[0ex]($A$ \\[0ex],$B$ \\[0ex],$a$ \\[0ex],$b$) \- \end{tabbing}